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Lie symmetries of a generalised non-linear Schrodinger 
equation: 11. Exact solutions 

L Gagnont and P Winternitz 
Centre de Recherches MathCmatiques, UniversitC de Montrial CP  6128, Succursale A, 
Montreal, Quebec, Canada H3C 337 

Received 8 July 1988 

Abstract. We obtain group-invariant solutions of the non-linear equation i$[ + A $  = 
a,$+ al$l$12+ a2$l$l4 for which the symmetry group was previously shown to be the 
extended Galilei group for alaz # 0 and the extended Galilei-similitude group for a1 = 0 
or a2 = 0. We use the symmetry subgroups to reduce the equation to ordinary differential 
equations which are solved, whenever possible, with the help of a singularity analysis. 
Solutions are obtained in terms of elementary functions, Jacobi elliptic functions and 
PainlevC transcendents. 

1. Introduction 

This paper is the second in a series devoted to the determination of group-invariant 
solutions of a generalised non-linear Schrodinger equation (GNLSE) in 3 + 1 dimensions: 

i+,+AtC, = ao~+a1cCII+l2+a2tC,I+l4 

+ = $(x, Y ,  2, t )  E c (1.1) 
U,ER i = 1,2,3 

where A is the three-dimensional Laplace operator in Euclidean 3-space and ai are 
constants. 

In the first paper [l] we gave the group theoretical preliminaries which can be 
summarised as follows. The GNLSE (1.1) is, for a la2#  0, invariant under the extended 
Galilei group G(3) = G defined by equation (2.3) in [ 11. For a1 = 0 or a2 = 0, it is 
invariant under a larger group, namely the extended Galilei-similitude group Cd (3) = 
Cd, including dilations (see [ 11, equation (2.4)). We also classified all subalgebras of 
the corresponding Lie algebras and id into conjugacy classes and determined their 
isomorphism classes. 

Our aim here is to apply the technique of symmetry reduction to this equation in 
order to obtain exact solutions. The method, going back to Lie [2] and described in 
various books [3-61, has been explained in [l] .  We recall that the essential point is 
to rewrite (1.1) in terms of invariants of a subgroup of the symmetry group in order 
to reduce the number of independent variables in the equation. We shall mainly 
concentrate on subgroups with generic orbits of codimension one in the set of inde- 
pendent variables (x, y ,  z, t )  and of codimension three in the union set of independent 
and dependent variables (x, y ,  2, t,  $, $*). The reduced equations will in this case be 

t Present address: Laboratoire de Recherches en Optiques et Laser, Dipartement de Physique, Universite 
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ordinary differential equations (ODE) which can, in some cases, be integrated with 
the help of a Painlevt singularity analysis [7 ,  81. In cases when they turn out to be of 
PainlevC type they can be solved in terms of elementary functions, Jacobi elliptic 
functions or PainlevC transcendents. 

The paper is organised as follows. In 0 2, we give the reduced equations for 
symmetry subgroups with orbits of codimension two without going into them in any 
further detail. In 0 3, we concentrate on subgroups with orbits of codimension one 
and zero which reduce (1.1) to ordinary or algebraic equations. ODE of order one and 
algebraic equations are easily solved. ODE of order two are submitted to the PainlevC 
test and integrated explicitly, whenever possible. Translationally invariant solutions 
and solutions invariant under subgroups involving dilations (similarity solutions) are 
given in $0 4 and 5 ,  respectively. Cylindrically and spherically invariant solutions have 
also been obtained and can be found in separate papers [9, 101. 

2. Symmetry reduction to partial differential equations in two variables 

The general procedure used to perform the symmetry reduction using some specific 
subgroup Go of the symmetry group is to first find the invariants of Go and rewrite 
(1.1) in terms of them. These invariants are obtained by solving the equations 

XiC?(x, Y ,  2, t, $9 +*) = 0 i =  1 , .  . . , 1 (2.1) 

where { X i }  is some basis for the Lie algebra of Go and Q is an auxiliary function. 
In this section, we will restrict to subgroups with generic orbits of codimension 

two in the spacetime ( x ,  y, z, t )  and of codimension four in the space ( x ,  y ,  z, t, +, +*). 
We then always have four invariants that can be chosen in the form 

I' = &(x, t )  

I 4-  =f* = + * a - ' * ( x ,  t ) .  

1 2  = 5 2 ( 4  t )  1 3 = f =  +CY-'(x, t )  

(2.2) 

This permits us to reduce (1.1) to a partial differential equation f o r f ( & ,  t2) which is 
a function of the two symmetry variables and & and write the solution of the GNLSE 

(1.1) as 

+(x, t )  =f(&, 52)CY(X, t )  (2.3) 

where CY, 5' and & are known. 

orbits of codimension two. 
Using the tables in [ l ]  we obtain the following results for all the subgroups with 

6) (jl , j 2 ? j 3 h  

44x9 t )  = f ( c  t )  r = (x'+ y 2  + z ~ ) " ~  

(ii) (j3+cp3+bm, t + ( a - a , ) m ) ,  U E R ,  b z 0 ,  c z 0 .  
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(v) ( t  - a,m + ak, ,  p,), a > 0. 

(vi) (k ,+bp2,  k2+bp1+cp2+ap3),  a > 0 ,  b 3 0 ,  C Z O  or a = b = 0 ,  C Z O .  

$(x, t )  = f ( t ,  5) exp{(i/4t) [x2+(y2t2-2bxyt+ b2x2)/(f2- b2+ct)]} 

5 = a [  (bx - yt) / (  t 2  - b2+  ct)] + z (2.9) 

if( + { 1 + [a’( b2 + t ’)I/ ( t 2  - b2 + c t ) } f& 

(vii) (j,+bm, t-a,m+ak,),  a > 0 ,   ER. 

(viii) (j,  + bm, k 3 ) ,  b 2 0. 

(ix) ( t+ (a -ao )m,p3) ,  UER.  

(2.12) 

(2.13) 
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(xi) ( j 3  + am, d + bm), a L 0, b 2 0. 

$(x, t )  = f ( & ,  52)t-‘S’Z) exp[i(aO - aot -4b In t ) ]  

if a, = 0, a, # 0 
if a2 # 0, a, = 0 51 = UP2 5 2 = z l p  

51 (i +4& I&, + 51 &&, +45:&161 + 51 (1 + S:)f,,,, + 45:f2ftlt2 - (4b + a25, + $S)f (2.14) 
- a1f If l 2  with S = 1 
- L f  If 14 

(xii) ( d  + aj, + bm, k3) ,  a L 0, b 3 0. 

with S = + ’  

$(x, t )  = f ( & ,  & ) c - ” ~  exp{i[(z2/4t)-ib In t - a o t ] }  

51 = t /P2 
51(i+4&)&, +45:ft,t1 + 

- a1f If IZ with S = 1 
- L f  If 14 

(xiii) ( d  + aj, + bm, t ) ,  a L 0, b 3 0. 

5, = a In p + O 
a2)ft2t2 -4a5:fsIt2+8b + i(1- S ) l f  

with a = $ ’  

(2.15) 

- a1f If IZ with S = 1 
- L f  If 14 with 6 =i’  

(2.16) 

(xiv) (d + aj, + bm, p 3 ) ,  a 2 0, b 2 0. 

$(x, t ) =  f ( t l ,  5 , )~-”~exp[i(-fb In c-a,t)] 51 = t /P2 5 , = a l n p + O  

51(i+451)&, +45:f6,sl f t i (  1 a’).&, -4a5?f6,t2 + i ( b  - si)f 
with S = 1 

(2.17) 

= {;;;;I; with S =+ ‘  

This completes the list of all reductions to partial differential equations in two variables. 
We will not go into them in any further detail here, but just mention that (2.4) has 
been treated elsewhere [ lo]  and that (2.13) for a, = 0 is the well known integrable 
non-linear (cubic) Schrodinger equation [ 1 1,121. 

3. Symmetry reduction to ordinary differential equations and algebraic equations 

3.1. General comments 

Subgroups of the symmetry group that have generic orbits of codimension one in the 
space of independent variables (x, y ,  z, t )  and of codimension three in (x, y ,  z, t, $, $*) 
space will provide reductions of (1.1) to ODE. 

The requirement that the solution $(x, t )  be invariant under such a subgroup will 
imply that the solution has the form 

$(x, t )  = f ( O a ( x ,  t )  f (5)  = M ( 5 )  exp(ix(5)) M ( 0 ,  x ( 5 )  E l-4 (3.1) 
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where a ( x ,  t )  and [(x, t )  are explicitly known for each subgroup. The complex function 
f ( 5 )  satisfies a ODE, obtained by substituting (3.1) into (1.1). 

The Lie algebra of the symmetry group is realised [ 11 by vector fields in the tangent 
space (ax, a y ,  a,, a,,  a*, a+*). Consider the Lie subalgebra corresponding to the subgroup 
providing the reduction. If the projections of the elements of this subalgebra onto the 
space tangent to the space of independent variables span the (ax, a y ,  a,) space, then 
the symmetry variable & in (3.1) will be 

( = t  (3.2) 
and the GNLSE (1.1) will be reduced to a first-order ODE. Separating out the real and 
imaginary parts of the corresponding ODE, we can always solve it explicitly. 

In all other cases, subgroups of the considered type will lead to a second-order 
complex ODE for f (  5). Taking the real and imaginary parts of the equation separately, 
we obtain a system of two coupled second-order real equations for the modulus M ( 5 )  
and the phase x ( 5 )  off(&).  

For many subalgebras, we can directly solve one of the equations and obtain the 
phase in the form 

where xo and So are real constants and the functions h(5) and k(5) depend on the 
subalgebra under consideration. Using (3.3), we then obtain a second-order real ODE 

for M ( 5 )  alone. 
For the remaining subalgebras, we can also decouple the two real equations for 

M ( 5 )  and ~ ( 6 ) .  However, this introduces third-order non-linear ODE. In the present 
paper, we concentrate on the case of second-order decoupled ODE, leaving the third- 
order ones for the third paper of this series. 

The GNLSE (1.1) is reduced to an algebraic equation, if we require that the solution 
should be invariant under a larger subgroup, having four-dimensional orbits in 
(x, y, z, t )  space. There are of course many such subgroups. We shall restrict ourselves 
to those that provide non-trivial solutions that are not special cases of solutions obtained 
from first-order ODE, i.e. to subalgebras which do not contain a three-dimensional 
Abelian subalgebra that is a subspace of ( p l ,  p 2 ,  p 3 ,  k, , k 2 ,  k3). 

3.2. Algebraic equations 

We shall now run through the list of algebras providing algebraic equations yielding 
non-trivial solutions. 

(i)  ( 4  t, PI, P z ) .  

$(x, t )  = ( 2 / d ’ z ( 1 / Z )  exP[i(-aot+xo)l a, > 0,  a2 = 0 (3.4a) 

$(x, t )  = ( 3 / 4 ~ ~ ) ” ~ ( 1 / & )  exp[i(-aot+x0)1 a,> 0, a, = 0. (3.46) 

(ii) (d, t , p 3 , j 3 + a m ) ,  a z o .  

(3.5a) 
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with 

p = ( xz + y y. 
The constant a must be chosen so that the expressions under the square root signs are 
positive. 

(iii) ( d  + am, j , ,  j,, j,, t), a 3 0 .  

-exp[i(-aot-a In r+,yo)] a, =o, a2<0 

with 

r = (x’ + y 2  + z2) ’ l2 .  

No non-zero solutions exist for the cubic case ( a 2  = 0). 

3.3. First-order ODE 

We run through all subalgebras, the elements of which are represented by vector fields 
spanning the ( a x , a y , d z )  space. We order them by the maximal number of space 
translations present in a basis. We only give the final result. Throughout, MO and ,yo 
are arbitrary real constants. 

(i) (PI 9 P 2 ,  P 3 ) .  

+(x, t ) =  ~ ~ e x p [ - i ( a ~ + a , ~ ~ + a ~ ~ ~ ) t + i , y , ] .  (3.7) 

(ii) ( k , ,  PI, P 2 ) .  

+(x, t )  = 

(iii) ( k , ,  k 2 + ~ ~ , , ~ 3 ) ,  a 2 0 .  

exp{i[(z2/4t) - aot - a ,Mi  In t + U ~ ( M ~ / ~ ) + X ~ I ) .  (3.8) 

t ( t + a )  
+(x, t )=Mo[t ( t+a) ] -1 /2exp 

- I t 2 (  t d t  + a)2 +,yo)]. (3.9) 

The integrals in the phase are easy to calculate, but we refrain from evaluating them, 
in order to avoid distinguishing between the generic case and the special case a = 0. 

(iv) ( k l + a p 1 ,  k 2 + b ~ 2 ,  kd, a,  ER. 

+(x, t ) = M o [ t ( t + a ) ( t + b ) ] - 1 ’ 2 e x p  i - -+-+- -ao t  

I t’( t + a)’( t + b)2 
d t  

{ [ i ( r c a  t T b  y )  
- -nlMij t ( t + a ) ( t + b )  (3.10) 

We again refrain from evaluating the integrals in the phase, since their evaluation 
would require the consideration of numerous special cases ( a  = b, a = 0, etc). 

3.4. Second-order ODE 

In this subsection, we shall derive the second-order equations for the magnitude and 
phase of +(x, t )  and decouple them, whenever possible. The actual solution of the 
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ODE is left to 9 9  4 and 5 ,  and to a future paper. Constant solutions of the ODE will 
be pointed out whenever they lead to non-trivial expressions for 4(x, t ) .  

We list the subalgebras and expressions or equations for a ( x ,  t ) ,  M(.$) and x(.$) 
of (3.1). 

(i) (j3+am, p 3 ,  t+(b -ao)m) ,  a z o ,  6 e R .  

( 3 . 1 1 ~ )  a = eaif7 

dP x = so I pMZ+xo (3.1 16) 

M - ( S i / p 2 M 3 ) + ( & f / p ) - ( a 2 / p 2 ) M  

= ( U ,  - 6) M + U ,  M3 + a2 M5 .$ = p = (x2+ $)1/2 (3.1 IC) 
where So is a real constant. A constant solution M(.$) = MO exists for a = So= 0 and 
leads to 

(3.11d) +(x, t )  = {( 1/2a2)( -a, f [ a :  - 4a2( a, - 6)] } 

which is valid as long as the expressions under the square roots are non-negative. 

1/2  1/2 exp[i( a0 - bt )]  

(ii) ( t  - a,m + ak,,  p l ,  p 2 ) ,  a > 0. 

a = exp[iiat(3z - at2)] ( 3 . 1 2 ~ )  

d.$ x = so s+ XO (3.126) 

M-(Si/M3) - ( ~ / 2 ) 5 M  = uOM + a,M3+ a2MS ( 3 . 1 2 ~ )  

.$=z-;at2. (3.12d) 

No constant solutions exist since a # 0. 
(iii) ( t + ( a - a o ) m , p l , p 2 ) ,  U E R .  

a = 

dz x = so I s + x o  

( 3 . 1 3 ~ )  

(3.136) 

M - ( S i / M 3 )  = (U ,  - U )  M + U ,  M3 + a2 M5 .$= z. ( 3 . 1 3 ~ )  

Constant solutions M(.$) = MO are given by the positive roots of 

Si + (U ,  - u ) M :  + U ,  M: + u~M:  = 0. ( 3 . 1 4 ~ )  

Thus 

+(x, t )  = MO exp{i[(S,/Mi)z+xo- 4 )  (3.146) 

d r  x = so I r2M'+ XO 

( 3 . 1 5 ~ )  

(3.156) 

M - (S i / r4M3)  + ( 2 / r ) M  + 6 M  = a,M + a, M3 + a 2 M 5  

5 = r = ( x 2 + y 2 +  z 2 ) ' / * ,  (3.1 5c)  

A constant solution M(.$) = MO exists for So = 0 and leads to relation (3.1 I d )  with a = 0. 
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(v) (d+bm,  k3 ,  j3+am) ,  a 2 0 ,  b z 0 .  

= t - S / 2  exp{i[-aot+(z2/4t)+aB-$b In t ] }  

5 = t / p 2 .  

( 3 . 1 6 ~ )  

(3.16b) 

This subalgebra leads to third-order ODE. A constant solution M ( 5 )  = MO exists for 
S,=a=O, 6=1 ,  namely 

$(x, t )  =(b/2al)”2t-”2 exp{i[-aot-$b In t + ( z 2 / 4 t ) + x 0 ] }  (3.17) 

where b l a ,  > 0. 
(vi) ( d  + bm, t, j 3  + am) ,  a 2 0, b 2 0. 

(Y = z-’ exp[-i( aot - a0 + b In z ) ]  

5 = z /  P. 

( 3 . 1 8 ~ )  

(3.18 b) 

For the quintic case ( a l  = 0) we obtain I ‘dl +bin( 5 ) x=so M2(1+52) ( 1 + 5 2 ) 1 / 2  +xo (3.1 8 c )  

Sit4 1 b2 5’( 1 + t2)G + 5(5* - 1)Rj  -- -+- M +  ($- b 2 -  a 2 t 2 ) M  = a2MS.  (3.18d) 1 + e 2 M 3  1+62 

For the cubic case ( a 2  = 0), we get a third-order ODE for b > 0. However, for b = 0 the 
result is simpler, namely 

r 
(3.18e) 

f 6  si 
(1 + t 2 ) 2  M 3  

t2( 1 + t2)G -- -+ [( 8’ - 2 ) u  + (2 - a 2 t 2 ) M  = a,M3.  (3.18f) 

A constant solution M ( 5 )  = MO exists for S = 
to (3.4b). 

(a ,  = 0), a = b = So= 0 and leads 

(vii) ( d  + bm, p 3 ,  j 3  + am) ,  a 3 0, b 2 0. 

(3.19a) 

5 = t / p ’ .  (3.19b) 

For the quintic case (a ,  = 0), we obtain a third-order ODE. However, for the cubic 
case (a,  = 0), we get 

(Y = t -s/2 exp[i(-a,t+aB-;b In t ) ]  

a 1 x = so z + g g + x o  ( 3 . 2 0 ~ )  

4 5 3 ~ + 4 5 2 ~ - 4 5 ( S ~ / M 3 ) + [ ~ b - a 2 ~ + ( 1 / 1 6 5 ) ] M  = a ,M3.  (3.20b) 

No constant solutions of (3.206) exist. 
(viii) ( d  + bm, k ,  , k, ) ,  b 2 0. 

( 3 . 2 1 ~ )  (Y = t 

5 = t / z 2 .  (3.21b) 

- R / 2  exp[i(p2/4t -aor - f b  In t ) ]  

This subalgebra leads to third-order ODE with no constant solution for M ( 5 ) .  
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(Y = t -"2 exp[-i(aot+ib In t ) ]  ( 3 . 2 2 ~ )  

5 = t/z2. (3.226) 

For the quintic case (a ,  = 0) 

(3 .22~)  

4 t 3 M  - (4Si/ M3)+&(M/5)  +6t2M+SbM = a2M5. (3.22d) 

For the cubic case ( a 2  = 0), we obtain a third-order ODE. No constant solution exists 
for M ( 5 ) .  

(x) (d+aj,+bm, t , p 3 ) ,  a 2 0 ,  b s O .  

(Y = p-' exp[-i(a,t+ b In p)] ( 3 . 2 3 ~ )  

5 = a In p + 8. (3.23b) 

The case b > 0 yields third-order ODE. However, for 6 = 0 we obtain 

,y = So I M-2 exp[2Sat/(a2+ l)] dt+,yo 

( a 2 +  l )M - ( a 2 +  1) M-3 exp[4Sa5/(a2+ l ) ]S ; -26ak+ a2M 

(3 .23~)  

a2M5 a 1 -  - 0  9 a = '  2 

a,=0, 6 = 1. 
- - {  a,M3 

(3.23 d )  

Constant solutions exist for a = 0. For the quintic case, we obtain (with a, = 0) 

9 ( x ,  t )  = {(1/8a2)[1 *( I  -64a2So) 1) P 
2 1 / 2  1/4 -1 /2  

x exp i[SoO{ ( 1/8a2)[ 1 * (1 - 64a2S~)1/2]}-1/2 - aot +,yon (3.23e) 

where So is chosen such that I + l >  0. For the cubic case, we have 

9 ( x ,  t )  = Mo(l/P) exP{i[(So/Mi)~-aot+XoI} (3.23-f) 

where MO is a positive root of 

U,M;- M:+ S; = 0. 

(xi) ( d  + bm, k3, p , ) ,  b SO. 

(y = t -S/2 exp{i[(z2/4t) -4b In r - sot]> ( 3 . 2 4 ~ )  

5 = t /  y2. (3.24b) 

This subalgebra gives third-order ODE. A constant solution exists for the cubic case 
( 6  = 1) and yields a special case of (3.8). 

(xii) ( j , , j2 , j3 ,d+bm),  b S 0 .  

(Y = t -s/2 exp[-i(aot+fb In t)]  (3.25a) 

5 = t /  r2, (3.25b) 

This subalgebra leads to third-order ODE and no constant solution exists for M ( 5 ) .  
Our next task is to solve the second-order ODE for M(5) obtained above. In general, 

this is a formidable task, since the equations are non-linear and quite complicated. 
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We use two systematic approaches. One consists of finding the symmetry group of 
the ODE, if one exists, and using it to decrease the order of the equation. The second 
method, which we found to be more fruitful, is to determine whether the ODE happens 
to belong to a class of integrable non-linear ODE, namely the class of Painlev6 type 
equations [7 ,13] .  By definition, solutions of PainlevC type equations have no moving 
critical points (branch points or essential singularities that are functions of the integra- 
tion constants). 

Equations having the Painlevt property are in general much easier to integrate. In 
fact, PainlevC and Gambier have classified all equations of the form 

j ;  = w, Y ,  Y )  (3.26) 

where F is rational in y and j and analytic in x [7 ,  131, having no moving critical 
points. Furthermore, they have obtained the first integrals of 44 of the 50 equations 
in the representative list. The remaining 6 define the so-called PainlevC transcendents 
and they cannot be integrated in terms of known functions. However the other 44 can 
be solved in terms of elementary or Jacobi elliptic functions or reduced to the Riccati 
equation. 

We first submit the equation to the ‘PainlevC test’ [8], in order to determine whether 
it satisfies certain necessary conditions for having the PainlevC property. This test has 
been implemented as a MACSYMA program [14]. If the equation passes the test then 
we look for a transformation of the form 

(3.27) 

where CY, P, y and S are functions of x, which takes the equation into one of the 50 
standard forms. 

Among the above second-order equations, those that do not pass the test for any 
value ofthe parameters involved are (3.18d),  (3 .18f ) ,  (3.20b) and (3.22d).  Furthermore, 
no symmetries exists for these equations that could be used to reduce their order. 

For all the other second-order equations, the test indicates that if we put 

M = [H(5) ] ’”  (3.28) 

then the equations for H ( 5 )  can pass the test under certain conditions on the parameters. 
We will now concentrate on subalgebras (3.12) and (3.13) which provide translationally 
invariant solutions and subalgebra (3.23) which gives similarity solutions. Subalgebras 
(3.11) and (3.15), compatible with Cauchy conditions imposed on a cylinder and on 
a sphere, respectively, have been analysed in two separate papers [9, 101. 

4. Translationally invariant solutions 

4.1. General comments 

In this subsection we shall consider solutions of the GNLSE ( l . l ) ,  invariant under 
subgroups involving the two translations generated by p 1  and p 2 .  For all practical 
purposes, we are solving the GNLSE (2.13) in one space dimension. In order to obtain 
a ODE, we must add one more symmetry generator, acting non-trivially on the space 
( t ,  z, 4, 4”).  We are thus interested in three-dimensional subalgebras of the symmetry 
algebra, containing ( p ,  , p z )  as an ideal. 
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Equivalently, we may view this subsection as a group theoretical analysis of equation 
(2.13) as such. For a , a 2 # 0 ,  this equation is invariant under the extended Galilei 
group e( l ) ,  generated by ( 2 ,  p , ,  k , ,  m).  For a ,  = 0, a, # 0 or  a, f 0, a2 = 0, the equation 
is invariant under the extended Galilei-similitude group Gd ( l ) ,  containing dilations 
as well. 

The generator that can be added to ( p ,  , p 2 )  in order to obtain a ODE is represented 
by one of the following: d + am, t - aom + ak,( a > 0 ) ,  t + ( a  - ao)m, k,  or p ,  . Using p 3  
or  k , ,  we obtain one of the first-order ODE solved in D 3, i.e. (3.7) or (3.8), respectively. 
Using d + am for a ,  = 0, a2 # 0, we obtain (3.22d) which does not pass the Painlevi 
test. For a l#O,  a2=0 ,  we obtain a third-order equation (that does have the 
PainlevC property). Note that (2.13) for a,=O is integrable and  that hence all ODE 

obtained from it have the Painlev6 property. 
Here we concentrate on the remaining two subalgebras, i.e. 

( t  - aom + ak , ,  P1, P2) a>O (4.1) 

( t +  ( a  - ao)m, Pl 3 P A  U € R .  (4.2) 

Both of these subalgebras lead to travelling-wave solutions, i.e. solutions for which 
the absolute value M ( 5 )  of CC, is a function of a variable of the form 

5 = z + v ( t )  

where 77 is some (specific) function. Such solutions are usually the most important 
ones in physical applications. Using (4.1) and (4.2) to perform a symmetry reduction, 
we obtain equations (3.12) and  (3.13), respectively. 

As suggested by the Painlevi test, we make the transformation (3.28) and obtain 
respectively the following equations for H(5) :  

H = (1/2 H)H2 + 2Si/ H + a5H + 2aoH + 2a1 H2 + 2a2H3 

H = ( 1 / 2 H ) I j 2 + 2 S i / H  + 2 ( a o -  u)H +2a1H2+2a2H3. 

(4.3) 

(4.4) 

Equation (4.3) passes the test for a2 = 0 only. Equation (4.4) passes the test for all 
values of the parameters. 

Under these conditions, they can be transformed into standard Painlevi type 
equations according to the general theory [7] by setting 

H ( 5 )  = A([ )  W(77)’O 77 = 77(0 (4.5) 

with A (6) and  77 (5) appropriately chosen. The equation for W( 7) is then the standard 
one. Let us consider the cubic and quintic cases separately. 

4.2. Solutions of the cubic N L S E  (ar = 0) obtained using the algebra (4.1) 

To transform (4.3) (with a, = 0) into a standard form, we choose 

A ( 5) = A. # 0 ( 4 . 6 ~ )  

77 = ~ ( a i A o / 2 ) ” ~ 5 +  770 (4.6b) 

where A. and  v0 are constants, and obtain 
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First of all, equation (4.7) does not allow constant solutions for W since a # 0. 
Secondly, it represents three different cases. 

(i) For a, = So = 0, we set 

7 0 = 0  

a = ( l / f i ) ~ ( A ~ a , ) ~ ’ ~ > O  

( 4 . 8 ~ )  

(4.8b) 

and obtain one of the 50 standard PainlevC type equations, namely the equation denoted 
PXX by Ince [7]: 

W =  (1/2 W) W 2 + 4  W 2 + 2 7 W  

Putting 
(4.9) 

w=u2  (4.10) 

we reduce it to the second PainlevC transcendant PI1 

ii = 2u3+  (4.11) 

The solution of the GNLSE (1.1) is then 

$(x, t )  = h ~ ’ 2 P i i [ ~ ( ~ a , A , ) ” 2 ~ ]  exp[idat(3z - at2)] exp(iXo) a, = 0 

where a and 6 are given by (4.8b) and (3.12d) respectively. For a,>O(h,>O), 
must be chosen real; for a ,  < O ( A o  < 0), PII must be chosen to be pure imaginary. 

(4.12) 

(ii) For a, # 0 and So = 0, we set 

A. = ( 4 ~ ) ~ ’ ~ / a ,  ( 4 . 1 3 ~ )  

7 0  = a0(2/a)2’3 (4.13 b )  

and again obtain (4.9). The solution of (1.1) then becomes 

+(x, t )  = ( 4 a ) ” 3 a ; ” 2 ~ , l [ ( a / 2 ) ’ / 3 5 +  ao(4/a)”’] exp[i&t(3z - at’)] 

x exp(ik.0) a, # 0. (4.14) 

(iii) For the case SoZO, we transform (4.3) (with a 2 = 0 )  into the standard [7] 

,io= - ~ ~ E s , / u ’ ‘ ~  (4.1 5 a )  

For a, > 0, PII must be real; for a ,  < 0, PI, must be pure imaginary. 

PainlevC equation PXXXIV by the choice 

(4.15b) 

( 4 . 1 5 ~ )  

We then obtain 

w =  (1/2 W) W2t4 f f  w2- 7 w- 1/2 w (4.16) 

The general solution of (4.16) is also expressible in terms of the second PainlevC 
transcendent PII. Indeed, putting 

(4.17) 2ff w = v +  V 2 + f T  

we find that V satisfies 

v = 2 v3 + 7 ~ - 2 a  -; 
which is solved by V =  P I , ( T ) .  

This completes the discussion for the subalgebra (4.1). 

(4.18) 
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4.3. Solutions of cubic NLSE obtained using the algebra (4.2) 

To transform (4.4) (with a 2 = 0 )  into standard form, we use the relations (4.5) and 
(4.6~1, b )  (with 5s z) and obtain, for W, 

W = (1/2 W) W 2  + 4 W2 + (4/alAo)(ao - U )  W + ( 4 S i / ~ , h i ) (  1/ W). (4.19) 

Relation (4.19) admits constant solutions W ( 7 )  = WO given by 

Wi+ [ ( U ,  - U ) /  U ,  A,] W',+ (Si/ a ,hi)  = 0 

which leads to already known solution (3.14) of (1.1) with az=O.  

(4.20) 

In the generic case, (4.19) actually represents three different subcases. 
(i) For So= 0 and a = a,, (4.19) is the standard PainlevC equation PXVIII [7]. Its 

W 2 = 4 W ( C +  W2) (4.21) 

where C is a constant having a physical meaning which depends on the model under 
consideration; usually it is related to the energy of the system. 

We note that equation (4.19) is invariant under the transformation A. = io el', 
, W =  @e-'' with io, $, @ and cp E Iw, A o ,  io and cp are constants. We can 

choose A. and W real as long as H ( 5 )  = A. W ( 7 )  remains positive. The solutions of 
(4.21) are thus real and so is C. This will also be true for the quintic case. 

The relation between W2 and W given by (4.21) can be illustrated by the 'phase 
diagrams' of figures 1 ( a ) ,  1 ( b )  and 1( c) for C = 0, C < 0 and C > 0, respectively. They 
explicitly show whether W can be finite or singular as well as positive or negative. 
The parameters A. and a ,  must be chosen such that M ( 5 )  is real. 

Solving (4.21), we obtain the following solutions for (1.1): 

+ = ( 2 / a , ) " 2 ( z  - z0)-' e-'%' e'Xo (4.22) 

$ = ( l /a l )"zc,  cn-'(c,z-t-c2, I/&) e-'"(+ eIXo c<o, a,>O (4.23) 

IC, = (-1/a,)"2c, cn(c,z+ c2, I/&) elx" c < 0, a, < 0 (4.24) 

first integral is 

77 = ,,i e l Q / 2  

c = 0, a,  > 0 

IC,=(2/al)'"c, tn(c,z+c2, 1 / a )  dn(c,z+c2,  l/a) e-l'ore'Xo C>O,a,>O 
(4.25) 

where c1 and c2 are real constants, and C is expressed in terms of c1 and c2. 
Solution (4.22) is non-periodic and singular at z = zo. Solutions (4.23) and (4.25) 

are also singular but periodic. Solution (4.24) is a finite and periodic solution, satisfying 

(ii) For So=O and a # a o ,  (4.19) is reduced to the standard PainlevC equation 
o s  IIC,] ( - 2 / a , ) 1 ~ 2 ~ c , ~ .  

PXIX by the choice 

a = a  -1 0 2 A O Q I .  

The first integral is 

(4.26) 

W 2 = 4 W ( C +  w+ W*).  (4.27) 

The form of the solution depends on the value of C. For C = 0 or C = a ,  the polynomial 
on the right-hand side of (4.27) has a double root. 

For C =0,  we obtain 

+ = ( ~ / u , ) " ~ c ,  cosech(c,z+c,) exp[-i(ao-cf)t] exp(ixy,,) a,>O (4.28) 
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Figure 1. Phase diagrams for equation (4.21). ( a )  C = 0 (the circle on this and all subsequent 
figures denotes a multiple zero of W 2  or W:). ( b )  C = - p 2  < 0. ( c )  C > 0. 

CL = ( - ~ / U , ) ” ~ C ~  sech(c,z+c,) exp[-i(a,-c~)t]  exp(ix,) a,<O (4.29) 

9 = (2/a,)”2c,  sec(c,z+ c2) exp[-i(a,+ c:)t] exp(ixo) a,>O (4.30) 

with the phase diagrams in figures 2 (a )  and 2(b).  Solution (4.28) is non-periodic and 
singular. Solution (4.29) is non-periodic and finite. It represents the famous soliton 
solution of the (1 + 1)-dimensional integrable NLS equation. Solution (4.30) is periodic 
but singular (see figure 2(b)).  

For C = $, we obtain similar solutions associated with the phase diagrams of figures 
2(c) and 2(d) :  

= ( ~ / U ~ ) ’ / ~ C ~  tan(c,z+ c2) exp[-i(ao-2c:)t] exp(ixo) a,>O (4.31) 

+ = ( ~ / u , ) ~ ” c ,  tanh(c,z+c,) exp[-i(ao+2c:)t] exp(ixo) U ,  > 0 (4.32) 

I C , = ( ~ / U , ) ” ~ C ,  coth(c,z+c2) exp[-i(ao+2c:)t] exp(ixo) al>O. (4.33) 

Solution (4.31) is periodic and singular. Solution (4.32) is finite and non-periodic and 
represents another kind of solitary wave, namely a kink. Solution (4.33) is singular 
and non-periodic. 

For C < 0, we obtain the following solutions (with a, < 0 ( E  = -1) or a ,  > 0 ( E  = 1)) 

IC, = cl(&al)-’”[1 - & / ( I  - - 4 ~ ) ’ / ~ ] ’ ’ ~  cn-‘ [ c , z+c2 ,  (1+(1-4C)”’)12] 
2(1 -4C)’12 

xexp{-i[a,- c? / ( I  - 4 ~ ) ” ~ l t )  exp(ixo) (4.34) 

$ =  cl(&al)-”2[1+E/(1 - - 4 ~ ) ’ ’ ~ ] ” ~ c n - ‘  

x exp{-i[a,+ - 4 ~ ) ” ’ l t )  exp(ixo). (4.35) 

The solutions (4.34) and (4.35) for a ,  > 0 ( E  = 1) are singular and periodic. The solutions 
(4.34) and (4.35) for a ,  < O  ( E  = -1) are regular and periodic. Figures 2(e) and 2 ( f )  
show the corresponding phase diagrams ( W2,  W ) .  

For 0 < C < $, we obtain 

c1 tn(c ,z+c, ,  k )  exp(-iat) exp(ixo) a,>O 
1 + (1 - 4C)’12 

(4.36) 
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Figure 2. Phase diagrams for equations (4.27). ( a )  C = 0. ( 6 )  C = 0 with v = ix. ( c )  C =a. 
( d )  C=a with V=ix .  ( e )  C<O, W , , , = - f * f ( l - 4 C ) ” 2 .  ( f )  C<O, W,,,= 
- t* f ( l  -4C)1’2 and 7 = ix. ( g )  O <  C <$, W2,3 = -f*$(l -4C) ‘” .  ( h )  O <  C <a,  W2,, = -4 * f (  1 - 4C)It’ and 7 = ix. ( i )  C > a; the curve may have two more critical points (not 
shown). ( j )  C > a and = ix; the curve may have two more critical points (not shown). 

4‘/ = ( -2/al)’”[ ;+3 1 -4c)1/2]-1’2cl[;-;( 1 - 4 c ) ” 2  

+ ( I  - 4 ~ ) ” ~  cn2(c ,z+  c2, k ) ~ ” ~  exp(-iat) exp(ixy,) a,<O (4.37 

where 
k 2  = 2( 1 - 4 C)’”/ [ 1 + ( 1 - 4C)’”I ( 4 . 3 8 ~  

a = ao-2c?/[1 +(1-4C)”’]. (4.386 

Also 

cI sn(c,z + c2, k )  exp(-iar) exp(iX,) a,>O 

(4.39) 

*=(-y2( 
$ =  (2/al)’/’[1+(1 -4C)”z]”2cl  c n - ’ ( c , z t c , ,  k )  

x { 1 + ( 1 - 4 C )  I ”  + [ - 1 + (1 - 4 C )  

x s n 2 ( c , z + c 2 ,  k ) }”?  exp(-iat) exp(ixy,) a,>O (4.40) 
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where 

k2  = [l  - (1 -4C)l’,]/[l + (1 -4c)1’*] 

u=ao+2c:/[1+(1-4C)1’2].  

( 4 . 4 1 ~ )  

(4.41b) 

Solution (4.36) is singular and  periodic. Solution (4.37) is regular and periodic. The 
corresponding diagram is shown in figure 2(g). Solution (4.39) is regular and periodic 
and solution (4.40) is singular and  periodic (see figure 2(h)). 

Finally, for C > a, we have the two solutions 

2c1 ’2+  E 
$ =   cl cl tn[ c1z+c2,  ( 4cl,2 )”,I exp{i[-(uo+&c:/C1/2)t+X01} ( 4 . 4 2 ~ )  

a,>O E = * l .  (4.42b) 
Both solutions are singular and  correspond to figure 2(i) for E = -1 and  figure 2 ( j )  
for F = + I .  

This completes the solutions of (1, 1) obtained from (4.27). 
(iii) For So#O, relation (4.19) is reduced to the standard Painlevi equation 

PXXXIII by choosing 

S2 0 -  - -1, 8 1 A 3  0 .  (4.43) 

The first integral is 

W’ = 4 w 3 t  2 ( Y w 2 + 4 c w +  1 

=4(  w- W,)( w- W’)( w- W3)= P( W) 
where 

(Y = 4( U O  - U ) /  a,Ao. 

(4.44) 

(4.45) 

Relation (4.43) implies that a,Ao < 0; thus, according to (4.6b), v0 can be chosen such 
that 7 is pure imaginary. 

The polynomial P (  W )  has one triple real root W, = -(1/4)1’3 for 

C = 3( 1/4)2’3 ( 4 . 4 6 ~ )  

(Y = 6( 1 / 4 p 3 .  (4.46b) 

This leads to the phase diagram in figure 3(a)  (7  = ix). Integrating (4.44) and 
substituting into (3.136) for x,  we obtain 

$ = {[2/u1(z - zO)’] -A0(1/4)1’3}1’2 exp(ix) 

x exp{-$ao -~(l/4)1’3alAo]t} u ~ > O , A O < O  (4.47a) 

x = ( ; A ~ u I ) ” * ~ ~ ’ ~ { z ~ -  z + (-2 X 41’3/A0~1)1’2 

Xtan~’[-Aoa,/(2x41’3)]1/2(z - zo)}. (4.47b) 

The polynomial P( W) has one double real root W, = W, and one single root for 

(4.48 a )  

(4.486) 

The solution is obviously non-periodic and singular at z = zO. 

c = (2w:- 1) /2  w, 
(Y = -2(2 WI - 1/4 W:) 

where W, satisfies one of the following conditions: 

-(1/4)’13< W, < O  (4.49 a )  
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w,>o 
W, < -(1/4)”3. 

(4.496) 

(4.50) 

The corresponding solutions of (1.1) are 

4 = AA’,{ W, - [ (1+4 W:)/4 W:] sec2 T}”* exp(ix) exp(-iat) 

d T  
X =  

A,< 0, a, > 0 

(1 + 4  4w’ W:)1’2 J 4 W: - (1 + 4  W:) sec’ T”’ 
(4.51) 

T = [( -Ao~l/2)(4 W: + 1)/4 Wf]”2( z - z,) 

4 = AA/*[ W, - [ (1+4 W:)/4 W:] sech’ T ] ” ~  exp(ix) exp(-iat) 

-( 1/4)’’3 < W, < 0 or W, > 0 

A,<O,a ,>O 

(4.52) 

~=[(A,a, /2)(4W:+ 1)/4W~]1’2(z-zo) W,< -( l/4)’’, 

4 =AA/’< W, +[(1+4 W:)/4 W:] cosech’ T } ” ~  exp(ix) exp(-iat) A , < O , a , > O  
(4.53) 

d r  
X =  4 W : + ( l + 4 W ~ ) c o s e ~ h ~ ~ + ~ ~  

with T and W, as in (4.52). The only finite solution is (4.52). The corresponding phase 
diagrams are shown in figures (3b) and 3(c). 

The polynomial P( W) in (4.44) has three real distinct roots W,, W, and 
W, = -114 W, W2 for 

c =  W,W,-(W,+ W*)/4W,W, ( 4 . 5 4 ~ )  
a = -2( w, + w, - 1 / 4  w, W,) (4.54b) 

w,> w*>o (4.55) 

where W, and  W, satisfy 

or  

w,< w,<o w, > -114 w:. (4.56) 

The two finite solutions of (1.1) for which W z c  W 6  W, are given by (see figure 3 ( d ) )  

( 4 . 5 7 ~ )  

(4.57b) 

W = W, cn’( r, k )  + W, sn2( r, k )  

x = ;( w, + 1/4 w, w2)-”2 z+xo 
dl 

T = ( W, + 1/4 W, W2)’’2( -$ioa,) ’ ’2(z - z,) k 2 = 4 W ,  W,( W1- W,)/(4W: W,+ 1). 

The two singular solutions where -cc < W s W, (see figure 3( d ) )  are as in (4.57) but 
with 

W=-[1+4W, W:sn*(~ ,  k)]/4W,W,cn2(r,  k)  A o < O , a , > O  (4.58) 

and W,, W, satisfying (4.55) or (4.56). 
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Figure 3. Phase diagram for equation (4.44) with t) =ix. ( a )  C and a given by (4.46); 
W, = - ($ ‘ I3 .  ( b )  C and a given by (4.48); W ,  satisfies (4.49) and W, = -1/4W:. (c )  C 
and a given by (4.48); W, satisfies (4.50) and W, = -1/4 W:. ( d )  C and a given by (4.54); 
W, and W, satisfy (4.55) or (4.56) and W, = -1/4W, W,. ( e )  C and a as in (4.59); W, C O ;  
the curve may have two more critical points (not shown). 

Finally, P (  W) can have one real root W, and two complex conjugate roots 
W, = WT = p + iq, q > 0. The solution of (1.1) is then 

cC,= exp[[i{[-ao-~a,ho( WI+2p) ] t+x}]  Ao<O,a l>O 

W = [ W , - A + ( W , + A )  cn(7, k ) ] / [ l S c n ( ~ , k ) ]  k 2  = ( A  -p + W,)/2A (4.59) 

T = 2 ~ ( - h 0 a , / 2 ) ” * ( z  - zo)  A’ = W: - 2p W, - 114 W, 

c = 2p w, - 114 w, (Y = -2( w, + 2p) w, < 0. 

This solution is periodic and singular (see figure 3(e)).  
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4.4. Solutions of the quintic N L S E  (a2#O) 

As stated above, (4.3) with a, # 0 is not of PainlevC type. We shall thus concentrate on 
(4.4). To transform it into a standard form we set 

A(z) = A,, 7 = ~ ( 4 a , / 3 ) ’ / ~ A ~ z +  7, (4.60) 

in (4.5) and obtain the standard PainlevC equation PXXX for W(7) :  

i i/ = (1/2 w )  W 2  +iw3 +;( a, /a ,Ao)  W2+$[( U @ -  a)/a,Ai] W 

+ %si/ a2A4,) ( 1/ W). (4.61) 

This equation admits constant solutions which yield the already known solution (3.14) 
for (1.1). 

For W # 0, the first integral of (4.61) is 

W 2  = W4+ (Y W3 4- p W2+4CW -3Si/a,A; 

= ( W -  W,)( w- W,)( w- W3)( w- W4)= P(  W) 

where 

(Y = $a,/ a2Ao p = 3( U, - u ) / u ~ A ~  

( 4 . 6 2 ~ )  

(4.62b) 

and C can still be taken real. 

p = 0. We then obtain 

CL = ( ~ / ~ u ~ ) ” ~ [ [ E / ( z  - z0)]’/* exp(-ia,t) exp(ixo) 

with the phase diagram in figure 4(a) .  

One real quadruple root in P (  W) leads to a real solution W only for So = C = (Y = 

U * >  0,  u1 = 0, E = *l (4.63) 

P (  W) has one real triple root W, and one real simple root W4# W, for 

p =-3(2W:+(YW1) ( 4 . 6 4 ~ )  

4 C  = 8 W:+3a W: (4.64b) 

Si = a2A: W:( W, +icy) 2 0 ( 4 . 6 4 ~ )  

with 

w4=-3w1-cY. (4.64d) 

This leads to the solution 

exp(ixy) exp[ -fi(a2hip - 3ao)t]  
3 W4-( W4- W , ) 2 ~ , A i ( ~ - ~ , ) 2 W l  

* = ( A o  3 - ( W4 - !V l )2~2A i( z - z@)* 

1 W4+ W1( W4- W,)*U,Ai + so z-ZO [, (-3 W,)”, [( W4- Wl)2~2A”,w,]3’2 

( z - z @ ) [ - ~  W4( W4- W1)2~2Ai]1’2 
3 w4 

x tan-’ (4.65) 

where p, So and W4 are as in (4.64) and 

a,>O 

a2<0,  A O > O  

if W4 s 0 s W, , W4 # W, (see figure 4( b))  

if O G  W, < W, or O <  W4< W, (see figure 4(c)). 
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Figure 4. Phase diagram for equation (4.62a). ( a )  So = C = a = p = 0; only the case W >  0 
is pertinent. ( b )  /3, C, So, W, as in (4.64) and W,sO< W , ,  W,# W,.  ( c )  p, C, So, W, 
as in (4.64) and 0 6  W , <  W, or 0s W4< W, (not shown). ( d )  p, C, So as in (4.66); 

as in (4.68); a 2 < 0  (1) = i x ) .  ( k )  p, C, So and W, as in (4.71). ( I )  p, C, So and W, as in 
( 4 . 7 1 ) , a 2 < O ( ~ = i x ) .  ( m ) P , C , S o a n d p a s i n ( 4 . 7 4 ) ,  W , s O s  W , ,  W,# W , . ( n ) p , C ,  
So and p as in (4.74), a, < 0 (1) = ix) ,  0 s W2 < W ,  . 

w 3 -  --- :a. ( e ) ,  (f), (g) P,  C, So and W, as in (4.68); a 2 > 0 .  ( h )  ( i )  ( j )  p, C, So and W, 

The only finite solutions are those for a, < 0. The solution for a, > 0 actually represents 
two solutions. One with A. > 0 for ( W, - W,)’a,A’,(z - zo)2 > 3 and another with A. < 0 
for ( W, - W,)2a2Ai( z - z0)* < 3. 

Equation (4.62) also leads to real solutions for two double real roots W, = 0 and 
W, = -;CY when 

c=so=o =9a:/16a:Ai. (4.66) 

The solution of ( 1 . 1 )  then is 

CC, = [ - ~ ( a , / a , ) { l  + E  e ~ p [ ~ ( 3 / a , ) ” ~ a , ( z  - z , J ] } - ~ ] ~ ”  

x exp{i[ (-ao + 3a:/ 16ad t + x01) a,>0, & = * l .  (4.67) 

The case E = 1 and a, < 0 gives a finite non-periodic solution while the cases E = - 1 ,  
a, < 0 or a, > 0 lead to two singular solutions (see figure 4(d)) .  The norm of the finite 
solution has the form of a kink or an antikink. 
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Figure 4. (continued). 

The polynomial P (  W) can have one double real root W, = W2 # W, # W4 # W, 

p = [ w : + 2 w , ( w 3 +  W,)+ W3W4] (4 .68a)  

when 

4 c  = - w:( w3+ W,) - 2  w, w, w, 
3.5: = -a2Ai W: W3 W, 3 0 

where 
w 4 = - 2 w , -  w3-a. 

Relations (4.68) impose one of the following possibilities: 

w, > 0 w 3 w 4 2 0  a2<0 

w, > 0 w 3 w 4 6 0  a,> 0 

w, = O J  w,= - w, - a. 

The solutions of (1.1) in this case are 

cc, = (how)1/2 e-iar eix W = ( a + p  coshr ) / (y+SCOshr)  

so 1/2 

= (t) A ,$ ( Wl - W3) ( WI - w,)] 

T = [( W, - W,)( W, - W,)] ’”($U~)~’~A~(Z - zO) 

CY = -2 w3 w4+ W,( w3+ W,) p = wl( w4- w3) 

y = 2  W, - ( W3+ W,) s = E (  w,- W3) 

(4 .68b)  

( 4 . 6 8 ~ )  

(4.68 d ) 

( 4 . 6 9 ~ ~ )  

(4 .69b)  

( 4 . 6 9 ~ )  

(4 .70)  
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where a, S,  and W, are given by (4.62b), (4.68) and W , ,  W,, W, can be ordered 
according to figures 4( e)-4( j ) .  

All the possible phase diagrams are given in these figures. The first three are for 
a, > 0 and  the last three are for a, < 0. The sign in brackets corresponds to E.  When 
W > 0, we choose A,> 0 and vice versa. This shows that (4.70) represents in fact 
thirteen different solutions. The particularly interesting cases are the finite ones. Those 
corresponding to W3 S W G W, in figure 4( e ) ,  0 S W S W3 in figure 4(g), W3 s W s W ,  
or W, S W G W, in figure 4( i) and W, W G 0 or 0 6 W G W, in figure 4( j )  represent 
solitary waves. The solution corresponding to W4S W S  W, in figure 4 (h )  is 
trigonometrically periodic (since T is imaginary). 

The polynomial P( W )  can have four real distinct ordered roots W, > W2 > W, > W, 
for 

( 4 . 7 1 ~ )  

(4.71b) 

( 4 . 7 1 ~ )  

p = wl w2+ ( wl + w2)(  w3+ w4) + w3 w4 

4 c  = - w, W,( w, + W,) - w3 W,( w, + W,) 

3s: = -a2Ai W ,  W, W, W4> 0 
where 

w,=-w,- w2- w,-a.  (4.71d) 

For W, > W2 > W3 3 0 2 W,, W3 # W, and a, > 0, we obtain the singular solution 
+ = ( ~ , ~ ) 1 / 2  e-iaf eix 

w = [ w,( W,  - w,) - w,( W,  - W,) sn2(.r, k ) ] / [  W ,  - W3 - ( W, - w,) sn2(T, k ) ]  

a,> 0 

(4.72) 

k 2  = [ ( W, - W3)( Wi - W4)1/ E ( Wi - W3)( W2 - W4)l 

T =  [( W ,  - W3)( W,- W ~ ) ] ’ / ’ ( ~ U ~ ) ” ~ A ~ ( Z - Z , ) .  

For W >  0, we take A,> 0, and vice versa (see figure 4(k)).  A regular solution is given 
by the change W,- W, , W ,  t) W, in W and is always positive (see figure 4( k ) ) .  Thus 
we take A,> 0. 

For W, > W2 > W3 > W, 2 0 and a,  < 0, we have the regular solution 

W = [ W , ( W , -  w,)-~3(wl-w2)sn2(.r,k)l/[w,-w3 

k2=(W1- W,)(W3- W,) / (W,-  W3)(W2- W,) 

- ( w, - W2) sn2(7, k) l  a,<O,A,>O (4.73) 

with ,y and T as in (4.72) with a2+ -a,. Another regular solution is obtained by the 
change W,- W,, W,- W,. The phase diagrams are shown in figure 4(1). 

For W ,  > W, 2 0 3 W,, W, # W3 and a2 < 0, we obtain a regular positive solution 
in the same form as (4.73). Also, by the change W2- W,, W , e  W 3 ,  we generate 
another regular negative solution for W ;  thus we take A , < O  (see figure 4(1)). 

Finally, P( W )  can have two distinct real roots W, , W2 and two complex conjugate 
roots W3 = WT = p + iq, q > O for 

p = w, W2+( w, + W2)2p+p’+q2 (4.74a) 

(4.746) 

3S:= -a,AiW, W 2 ( p 2 + q 2 ) 2 0  (4.74c) 

4 c  = - w, w,2p + ( p 2 +  q2) (  w, + W,) 
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where 

2p=-w,- w,-a. 

The corresponding solutions for ( 1 . 1 )  are then 
9 = (~,w)l /2  e-iar ,ix 

W = [ W,B - E W2A + ( W2A + E W,B) cn(7, k ) ] / [ B  - EA+ ( A  + E B )  cn(T, K ) ]  

x=(--EWI W2/AB)1’2i(p2+q2)1/2 d r / W  

7 = ( A B ) 1 / 2 2 ( f ~ ~ 2 ) 1 ’ 2 A 0 ( ~ - ~ , )  k2=E[(A+EB)*-( Wl- W2)’]/4AB 

I 
A2 = ( W ,  - p ) ’ +  q2 B 2  = ( w, - p ) ’ +  4 2  

49 1 

(4.74d) 

(4.75) 

where a, So, p are given by (4.62b), (4.74) and E = 1 when a,> 0,  E = -1 when a,<O. 
For the case a2 > 0, solution (4.75) actually represents two different solutions; in the 
region where W > 0, we choose A 0  > 0 and vice versa (see figure 4( m ) ) .  The case a2 < 0 
is regular and  we choose A, > 0 if we have 0 < W, G W S W, (see figure 4( h ) ) ,  or A, < 0 
i f w e  have W 2 S  W S  W,<O. 

5. Solutions invariant under a subgroup involving dilations 

Solutions involving some symmetry under dilations are usually called similarity 
solutions. Among all the subalgebras listed in 0 3 and involving dilations, only one 
leads to second-order ODE for M ( 5 )  which is of PainlevC type under certain conditions. 
This subalgebra is 

( d  + aj3 9 4 P3) a 3 0  (5.1) 

which leads to relations (3 .23a)-(3.23d)  (with b = 0). 
Submitting (3 .23d)  to the PainlevC test, we find that ( 3 . 2 3 d )  passes the test and  

can be reduced to standard PainlevC type equations only if a = 0. However, in the 
case a # O  and So=O, we can reduce the order of the equation by one, since it is 
invariant under the change &+[+&,, 5, is a constant. The transformation to use is 

y = M  W ( Y )  = 5 wy = h (5.2) 

which leads to 

- ( a 2 +  l ) h ,  - 2 a h 2 +  ( y  - a , y 3 ) h 3  = 0 

- ( a ’ + 1 ) h,. - ah + (ay - a,y ’) h = o 
c l 2  = 0 

a ,  =o.  
These are Abel type equations that are difficult to integrate. We will not go into them. 

Let us come back to the PainlevC type equations (for a = 0) and separately analyse 
the cubic and  quintic cases. 

5.1. The cubic case (az = 0, S = 1) 

To transform ( 3 . 2 3 d )  (with a = 0) into standard form we again make the transformation 
(3 .28)  and then use relations (4.6a), (4.66) (with t= e ) ,  and obtain for W :  

W = ( 1 / 2  W )  W 2  + 4 W2 - (4/ a ,  A,) W + (4Si/ a ,  A :)( 1/ W ) .  ( 5 . 5 )  

Constant solutions W = W, lead to already known results (3 .23f )  and (3 .23g) .  
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The generic case is actually very similar to one treated above (see (4.19)). It can 

(i)  For So=O, (5.5) is reduced to the standard PainlevC equation PXIX by the 

A, = -2/a , .  (5.6) 

The first integral is (4.27) and 7 - 7, = ei8 is pure imaginary. The solutions for (1.1) 
are still obtained in a similar manner as in 0 4.1 and will be simply listed here with 
the values of some parameters and a reference to the corresponding phase diagram. 
These diagrams contain all information about the degeneracy of the roots and on the 
singular, regular, periodic or non-periodic character of W (  e) .  

be divided into two different cases. 

substitution 

For C = 0 (see figure 2(b)) ,  we have 

CC, = (2/al)’/*p-’ sec(@ - e,) exp(-ia,t) exp(ixo) a, > 0. (5.7) 

For C = a  (see figure 2(d)) ,  we have 

I) = (l/ul)1’2p-’ tanh[(l/&)(e - e,)] exp(-ia,t) exp(ixo) a,>O ( 5 . 8 )  

(5.9) I) = ( l / ~ ~ ) ” ~ p - ’  coth[(l/&)(e- eo)] exp(-ia,t) exp(ixo) a, > 0. 

The solution (5.8) is finite and non-periodic as a function of 8, but has a pole for 
p = 0. Solution (5.9) is singular for 6 = 0,. 

CC, = ( e / a , ) ” * ( c : +  ~ ) ’ / ~ p - ’  cn{c,O+c,, [(c:- 1)/2c?]”*} exp(-ia,t) exp(ixo) 

where I c , ( > l ,  ~ = l  for a , > O a n d  E = - 1  for a l<O. 

CC,= ( 2 / ~ ~ ) ’ / ~ ( 1  - c : ) ’ / * p - l  sn{c,e+c,, [ ( I  - C ~ / C ; ] ’ / * }  

For C < O  (see figure 2 ( f ) )  we obtain 

(5.10) 

For O <  C < a  (see figure 2 ( h ) )  we obtain the finite solution 

x exp(-ia,t) exp(ix,) a, > 0,o < IC’/ <; (5.1 1) 

and the singular solution 

C C , = ( ~ / U ~ ) ’ ~ ’ ~ - ’ I [ C : + ( C : - ~ )  sn2{c,e+c2, [ ( i - c ~ ) / c ~ ] 1 / 2 } ~  

x [cn{c,e + c2, [ ( I  - C ~ ) / C ~ ] ’ / ’ } ~ - ’  exp(-ia,t) exp(ixy,). (5.12) 

Finally for C > a  (see figure 2 ( j ) )  we have 

CC, = ( 2 / ~ , ) ” ~ p - ’ c ,  tn{c,o + c2, f [ ( 2 c : +  I ) /c~]”*}  

x exp(-ia,t) exp(ixo) a ,  > 0, IC11 > 1 / a .  (5.13) 

(ii) For So # 0, (5.5) is reduced to the standard PainlevC equation PXXXIII by the 
substitution (4.43). The first integral is (4.44) with 

ff =-4/aiAo. (5.14) 

The solutions of (1.1) can be classified according to the value of C and cy, exactly 

For C and cy given by ( 4 . 4 6 ~ )  and (4.46b) we obtain (see figure 3 ( a ) )  

According to (4.43) and (4.6b), 7 - v0 is still pure imaginary here. 

as in 8 4.3. 

~ = ( 2 / ~ , ) ” ~ ~ - ’ [ f + i / ( e - e ~ ) * ] ~ / ~  

x exp ius{ e - 6,  - J? tan-’[ ( e  + e,)/&]} - a,t + xo] a,>O. (5.15) 
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For C and a given by (4.48a) and (4.48b) and W, satisfying one of the following 
conditions: 

-( 1 / 4 p 3  < W, < 0 (5.16a) 

4> w,>o (see figure 3(b))  (5.166) 

W, < -( 1/4)”’ (see figure 3(c) )  (5.17) 
we obtain the corresponding solutions for (1.1): 

$ = ( 2 / ~ , ) ” ~ [ 1 / ( 8 W : - l ) ] ~ / ’ p - ~ [ 4 W : - ( l + 4 W ~ )  sec2 T ] ” ~  

x exp(ix) exp(-ia,t) a ,>O 

COS’ r d r  I -4 w: 
= (4 W: + 1)’12 1 + 4 W: sin2 r i- x0 

r = [(4 w: + 1) / (  1 - 8 w;)]II2( e - e,) 
$ =  (2/a , ) ’ /2[ l / (8  W:-l)]”’p-’[4W: 

0 < W, < or -( 1/4)”’ < W, < 0 

- (1 $ 4  W:) sech2 T ] ~ ’ ~  exp(ix) exp(-ia,t) a ,>O 

d r  
4 W:- (1 + 4  W:) sech2 T 

+ xo (-1 -4  W:)1’2 

Wl < -( 1/4)”3 

4w: I X =  

= [( 1 + 4  W:)/(8 W: - 1)]1’2( 0 - 0,) 

$ = (2/a1)”’[l/(8 W: - l)]”’p-’ 

x [4 W: + (1 + 4  W:) cosech2 exp(i,y) exp( -ia,t) 

d r  
4 W:+ (1 $ 4  W:) cosech’ r”’ X =  

(5.18) 

(5.19) 

(5.20) 

with r and W, as in (5.19). The solution (5.19) is finite as a function of r and has a 
pole for p = 0. The others are singular as functions of T. 

For C and (Y given by (4.5a) and (4.54b) where W, and W2 satisfy 

W,> W2>0 1 / 4 w , w 2 >  wl+ w2 (5.21) 

or 

W’< w,<o Wl > -1/4 W: (5.22) 

we obtain three real ordered roots for P ( W ) .  The two finite solutions of (1.1) for 
which W 2 S  W S  W, are given by (see figure 3 ( d ) )  

a, < 0 for (5.21) 
a, > 0 for (5.22) 

W,+W2-- ) w] 1’2 exp(ix) exp(-ia,t) 
4 W1 W, 

(5.23) 

W = W ,  cn2( r, k )  + W2 sn2( r, k )  

d7 x = $( w, + 1/4 w, WJ-1’2 W+X, 
= (w, + 1 / 4 w ,  w J ’ ~ [ ( I / ~  w, w,) - w, w2i1’’(e - e,) 

k 2  = 4 W, W2( W, - W2)/ (4  W: W2 + 1 ). 
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The two singular ones where --CO< W s  W, are as in (5.23) but with (see figure 3 ( d ) )  

1+4W,W:sn(r, k )  
4 W, W, cn’( r, k )  

W = -  a,>O (5.24) 

and W,, W, still satisfying (5.21) or (5.22). 
Finally, P( W) can have one real root W, < -4 and two complex conjugate roots 

W2 = Wf = p + iq, q > 0. The corresponding singular solution (see figure 3(e)) is given 

CC, = { ( 8 / u 1 ) [  W,/(4 W:- l ) ]  W}1’2 exp(i)o exp(-ia,t) (5.25) 

with W, x, k, A as in (4.59) and 

by 
a,>O 

= 2&[4 wl/(i -4 w ; ) ] ~ / ~ (  e - e,) w, < -4. 

5.2. Quintic case (a2 = 0, 6 = $) 

To transform (3.23d) (with a = 0) into a standard form we make the substitution (4.60) 
(with z +  e )  and obtain the standard PainlevC equation PXXX 

W = ( 1 / 2  W) W2+;W3-(3/8a2hi) W+t(Si/a2A:)(l/ W). (5.26) 

This equation admits constant solutions leading to (3.23e). In the generic case the 
first integral is similar to ( 4 . 6 2 ~ )  but with 

P( W) has one real triple root W, = (l/A0)(l/8a2)1’2 and one simple root W4= -3 W, 
for 

C = ( 8 / A ; ) ( l / 8 ~ ~ ) ” ~  ( 5 . 2 8 ~ )  

S i  = 1/64a2. (5.28b) 

This leads to the singular solution 

(5.29) 

where E = -1 for ( e  - Bo) ,  > 
diagram is given in figure 4(6). 

rewritten as 

and E = 1 for ( 8  - Bo), < i. The corresponding phase 

P( W) has one real double root W, under the conditions (4.68) which can be 

( 5 . 3 0 ~ )  

(5.306) 

A i = 3/ 4 4  ( 3 W: - w, W4) > 0 

4 c = 2 w: - 2 w, w, w, 
-3 w: w, w, 

Si=- S O  
16a2 (3 W:- W, W4), 

( 5 . 3 0 ~ )  

where 

W4=-2W1- w,. (5.30d) 
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Thus all the parameters are given in terms of W, and W , E R  Conditions (5.30a), 
(5.30b) and (5.30d) state that a, must be positive and w3w4Go. By ordering the 
roots as W, > W3 2 0 2  W,, W3 # W, or as W4> W, 2 0 2 W3, W, f W3, one obtains 
the phase diagrams in figures 4(e) and 4(f). The solutions for (1.1) can all be given 
in the form 

IC, = ( A o  W)”2p-1’2 exp(i,y) exp(-ia,t) (5.31) 

where x, W are as in (4.70) with z +  8 and A o ,  So, W, as in (5.30) and a2>0.  The 
sign in figures 4(e) and 4(f)  refers to e in the solution. Here again, for W>O we 
choose A,> 0 and vice versa. 

When the coefficients in P( W) satisfy (4.71) we have four real ordered roots 
W, > W2> W,> W,. One can use (4.71) to show that the real solution W is obtained 
only for a, > 0. The corresponding phase diagram is the one in figure 4( k ) .  We thus 
expect one finite solution with W, s W s W, and on? singular solution which will be 
positive for certain values of 0 and negative for others. The singular solution has the 
form (5.31) where W, ,y are as in (4.72) (with z +  e ) ,  and A o ,  So,  W, satisfying (4.71). 
The regular one is obtained by the permutation W, t, W,, W, c) W,. 

Finally P( W) can have two distinct real roots W, , W, and two complex conjugate 
ones W3= W$=p+iq ,  q>O when conditions (4.74) are imposed. Still here, the 
solutions which correspond to phase diagram in figures 4( m) and 4( n )  have the form 
(5.31) where x, W are as in (4.75) (with z +  e). The solution is singular for a,>O 
( W, 2 0 2  W,, W, # W,) and finite for a, < O  ( W, > W 2 2  0). 

An overall comment on the solutions presented in this section is that they are all 
functions of the azimuthal angle e in the (x, y)  plane. Since these functions do not, 
in general, have period 27r (or any period at all, in some cases), the solutions will 
be multivalued. This must be taken into account in any physical interpretation. 

6. Conclusions 

This paper, the second in a series, is devoted to the presentation of reduced equations 
and of some group-invariant solutions for the non-linear Schrodinger equation (1.1). 
Cylindrically and spherically invariant solutions have been presented in separate papers 
[9, 101. Here we have concentrated on translationally invariant solutions (§ 4) and on 
a specific type of dilationally invariant solutions ( §  5). 

Each of the numerous solutions presented above actually represents a conjugacy 
class of solutions. The entire class is obtained by applying a general symmetry group 
transformation to the representative solution. The allowed transformations are exten- 
ded Galilei transformations, coordinate reflections and time reversal in all cases, and 
also dilations, whenever u1 = 0, or a2 = 0. The transformation formulae were presented 
in the first paper of this series (see [l] ,  equations (2.6)-(2.8)). 

One aspect that is well illustrated by the results of this paper is that the combination 
of group theory and singularity analysis is a powerful tool for obtaining explicit analytic 
particular solutions of non-linear PDE. From this point of view it is quite crucial to 
perform a rigorous subgroup classification, rather than to simply choose ‘intuitively 
obvious’ subgroups for performing a reduction. As an example, consider the case of 
cylindrical boundary conditions. Intuitively, one could imagine that the subalgebra 
( j 3  , p 3 ,  t ) ,  leading to cylindrically symmetric static solutions, is a good candidate for 
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performing the reduction. The subalgebra analysis, on the other hand, has shown [ 11 
that this algebra is just one member of the family ( j ,  + am, t + ( b  - a,) m, p 3 )  of algebras, 
where the constants a and b have an invariant meaning (i.e. algebras with constants 
(a ,  b )  and (a ‘ ,  b7-are mutually conjugate only if la(  = la’l, Ibl= lb’l). PainlevC type 
equations are obtained only for a*=&,, cl,- b =3a:/16a2 if az#O, and for a * = $  if 
a, = 0 [9]. The corresponding solutions would have been missed, had we set a = 0, or 
b = 0 ab initio. Similarly, the algebra ( t  - a,m + ak, ,  p l ,  p , )  leads to different types of 
solutions for different values of the constant a. 

Two technical restrictions have so far been made. The first is that we have only 
presented reductions that lead to second-order ODE. Eight of the subgroups with 
generic orbits of codimension one (when projected into the space of independent 
variables) lead to third-order equations. They will be discussed in the third paper of 
this series. It should be noted that Tajiri [15] and Boiti and Pempinelli [16] have 
already discussed some similarity solutions of the cubic non-linear Schrodinger 
equation in (1 + 1) and ( 2 +  1) dimensions. In particular, solutions of a reduction to 
a third-order ODE have been obtained [ 161 in terms of the fourth PainlevC transcendent. 
This in itself shows that a careful singularity analysis of the third-order ODE can yield 
interesting results. 

A further restriction made above is that we have only considered subgroups that 
lead to invariants I l ( x ,  y,  z, t, $, $*) that provide a non-singular transformation from 
(4,  $*} to I,. This made it possible to always express $ (and $*) in terms of 
similarity variables. If the corresponding mapping is not invertible, one is lead to what 
Ovsiannikov [SI calls ‘partially invariant solutions’. We plan to return to these in a 
later publication. 

Physical interpretations and applications of the obtained solutions also remain 
open. Clearly they depend crucially on the model under consideration, i.e. on the 
interpretation of the function $. As always, the obtained explicit solutions can serve 
as a basis for a perturbation theory that should provide further approximate solutions. 
They can also serve as the basis of a quantisation procedure. 
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